<thead id="fflbj"><font id="fflbj"><cite id="fflbj"></cite></font></thead>
    <progress id="fflbj"><thead id="fflbj"><font id="fflbj"></font></thead></progress>

            /

             

             

             

             
              IC培訓
               
             
            Big Data Business Intelligence for Criminal Intelligence Analysis培訓

             
              班級規模及環境--熱線:4008699035 手機:15921673576( 微信同號)
                  每個班級的人數限3到5人,互動授課, 保障效果,小班授課。
              上間和地點
            上課地點:【上?!浚和瑵髮W(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山學院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領館區1號(中和大道) 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協同大廈
            最近開間(周末班/連續班/晚班):2018年3月18日
              實驗設備
                ◆小班教學,教學效果好
                   
                   ☆注重質量☆邊講邊練

                   ☆合格學員免費推薦工作
                   ★實驗設備請點擊這兒查看★
              質量保障

                   1、培訓過程中,如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
                   2、培訓結束后,授課老師留給學員聯系方式,保障培訓效果,免費提供課后技術支持。
                   3、培訓合格學員可享受免費推薦就業機會?!詈细駥W員免費頒發相關工程師等資格證書,提升職業資質。專注高端技術培訓15年,端海學員的能力得到大家的認同,受到用人單位的廣泛贊譽,端海的證書受到廣泛認可。

            課程大綱
             
            • Day 01
              =====
              Overview of Big Data Business Intelligence for Criminal Intelligence Analysis
            • Case Studies from Law Enforcement - Predictive Policing
              Big Data adoption rate in Law Enforcement Agencies and how they are aligning their future operation around Big Data Predictive Analytics
              Emerging technology solutions such as gunshot sensors, surveillance video and social media
              Using Big Data technology to mitigate information overload
              Interfacing Big Data with Legacy data
              Basic understanding of enabling technologies in predictive analytics
              Data Integration & Dashboard visualization
              Fraud management
              Business Rules and Fraud detection
              Threat detection and profiling
              Cost benefit analysis for Big Data implementation
              Introduction to Big Data
            • Main characteristics of Big Data -- Volume, Variety, Velocity and Veracity.
              MPP (Massively Parallel Processing) architecture
              Data Warehouses – static schema, slowly evolving dataset
              MPP Databases: Greenplum, Exadata, Teradata, Netezza, Vertica etc.
              Hadoop Based Solutions – no conditions on structure of dataset.
              Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
              Apache Spark for stream processing
              Batch- suited for analytical/non-interactive
              Volume : CEP streaming data
              Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
              Less production ready – Storm/S4
              NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
              NoSQL solutions
            • KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
              KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
              KV Store (Hierarchical) - GT.m, Cache
              KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
              KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
              Tuple Store - Gigaspaces, Coord, Apache River
              Object Database - ZopeDB, DB40, Shoal
              Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
              Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
              Varieties of Data: Introduction to Data Cleaning issues in Big Data
            • RDBMS – static structure/schema, does not promote agile, exploratory environment.
              NoSQL – semi structured, enough structure to store data without exact schema before storing data
              Data cleaning issues
              Hadoop
            • When to select Hadoop?
              STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
              SEMI STRUCTURED data – difficult to carry out using traditional solutions (DW/DB)
              Warehousing data = HUGE effort and static even after implementation
              For variety & volume of data, crunched on commodity hardware – HADOOP
              Commodity H/W needed to create a Hadoop Cluster
              Introduction to Map Reduce /HDFS
            • MapReduce – distribute computing over multiple servers
              HDFS – make data available locally for the computing process (with redundancy)
              Data – can be unstructured/schema-less (unlike RDBMS)
              Developer responsibility to make sense of data
              Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
              =====
              Day 02
              =====
              Big Data Ecosystem -- Building Big Data ETL (Extract, Transform, Load) -- Which Big Data Tools to use and when?
            • Hadoop vs. Other NoSQL solutions
              For interactive, random access to data
              Hbase (column oriented database) on top of Hadoop
              Random access to data but restrictions imposed (max 1 PB)
              Not good for ad-hoc analytics, good for logging, counting, time-series
              Sqoop - Import from databases to Hive or HDFS (JDBC/ODBC access)
              Flume – Stream data (e.g. log data) into HDFS
              Big Data Management System
            • Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
              Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
              Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
              In Cloud : Whirr
              Predictive Analytics -- Fundamental Techniques and Machine Learning based Business Intelligence
            • Introduction to Machine Learning
              Learning classification techniques
              Bayesian Prediction -- preparing a training file
              Support Vector Machine
              KNN p-Tree Algebra & vertical mining
              Neural Networks
              Big Data large variable problem -- Random forest (RF)
              Big Data Automation problem – Multi-model ensemble RF
              Automation through Soft10-M
              Text analytic tool-Treeminer
              Agile learning
              Agent based learning
              Distributed learning
              Introduction to Open source Tools for predictive analytics : R, Python, Rapidminer, Mahut
              Predictive Analytics Ecosystem and its application in Criminal Intelligence Analysis
            • Technology and the investigative process
              Insight analytic
              Visualization analytics
              Structured predictive analytics
              Unstructured predictive analytics
              Threat/fraudstar/vendor profiling
              Recommendation Engine
              Pattern detection
              Rule/Scenario discovery – failure, fraud, optimization
              Root cause discovery
              Sentiment analysis
              CRM analytics
              Network analytics
              Text analytics for obtaining insights from transcripts, witness statements, internet chatter, etc.
              Technology assisted review
              Fraud analytics
              Real Time Analytic
              =====
              Day 03
              =====
              Real Time and Scalable Analytics Over Hadoop
            • Why common analytic algorithms fail in Hadoop/HDFS
              Apache Hama- for Bulk Synchronous distributed computing
              Apache SPARK- for cluster computing and real time analytic
              CMU Graphics Lab2- Graph based asynchronous approach to distributed computing
              KNN p -- Algebra based approach from Treeminer for reduced hardware cost of operation
              Tools for eDiscovery and Forensics
            • eDiscovery over Big Data vs. Legacy data – a comparison of cost and performance
              Predictive coding and Technology Assisted Review (TAR)
              Live demo of vMiner for understanding how TAR enables faster discovery
              Faster indexing through HDFS – Velocity of data
              NLP (Natural Language processing) – open source products and techniques
              eDiscovery in foreign languages -- technology for foreign language processing
              Big Data BI for Cyber Security – Getting a 360-degree view, speedy data collection and threat identification
            • Understanding the basics of security analytics -- attack surface, security misconfiguration, host defenses
              Network infrastructure / Large datapipe / Response ETL for real time analytic
              Prescriptive vs predictive – Fixed rule based vs auto-discovery of threat rules from Meta data
              Gathering disparate data for Criminal Intelligence Analysis
            • Using IoT (Internet of Things) as sensors for capturing data
              Using Satellite Imagery for Domestic Surveillance
              Using surveillance and image data for criminal identification
              Other data gathering technologies -- drones, body cameras, GPS tagging systems and thermal imaging technology
              Combining automated data retrieval with data obtained from informants, interrogation, and research
              Forecasting criminal activity
              =====
              Day 04
              =====
              Fraud prevention BI from Big Data in Fraud Analytics
            • Basic classification of Fraud Analytics -- rules-based vs predictive analytics
              Supervised vs unsupervised Machine learning for Fraud pattern detection
              Business to business fraud, medical claims fraud, insurance fraud, tax evasion and money laundering
              Social Media Analytics -- Intelligence gathering and analysis
            • How Social Media is used by criminals to organize, recruit and plan
              Big Data ETL API for extracting social media data
              Text, image, meta data and video
              Sentiment analysis from social media feed
              Contextual and non-contextual filtering of social media feed
              Social Media Dashboard to integrate diverse social media
              Automated profiling of social media profile
              Live demo of each analytic will be given through Treeminer Tool
              Big Data Analytics in image processing and video feeds
            • Image Storage techniques in Big Data -- Storage solution for data exceeding petabytes
              LTFS (Linear Tape File System) and LTO (Linear Tape Open)
              GPFS-LTFS (General Parallel File System - Linear Tape File System) -- layered storage solution for Big image data
              Fundamentals of image analytics
              Object recognition
              Image segmentation
              Motion tracking
              3-D image reconstruction
              Biometrics, DNA and Next Generation Identification Programs
            • Beyond fingerprinting and facial recognition
              Speech recognition, keystroke (analyzing a users typing pattern) and CODIS (combined DNA Index System)
              Beyond DNA matching: using forensic DNA phenotyping to construct a face from DNA samples
              Big Data Dashboard for quick accessibility of diverse data and display :
            • Integration of existing application platform with Big Data Dashboard
              Big Data management
              Case Study of Big Data Dashboard: Tableau and Pentaho
              Use Big Data app to push location based services in Govt.
              Tracking system and management
              =====
              Day 05
              =====
              How to justify Big Data BI implementation within an organization:
            • Defining the ROI (Return on Investment) for implementing Big Data
              Case studies for saving Analyst Time in collection and preparation of Data – increasing productivity
              Revenue gain from lower database licensing cost
              Revenue gain from location based services
              Cost savings from fraud prevention
              An integrated spreadsheet approach for calculating approximate expenses vs. Revenue gain/savings from Big Data implementation.
              Step by Step procedure for replacing a legacy data system with a Big Data System
            • Big Data Migration Roadmap
              What critical information is needed before architecting a Big Data system?
              What are the different ways for calculating Volume, Velocity, Variety and Veracity of data
              How to estimate data growth
              Case studies
              Review of Big Data Vendors and review of their products.
            • Accenture
              APTEAN (Formerly CDC Software)
              Cisco Systems
              Cloudera
              Dell
              EMC
              GoodData Corporation
              Guavus
              Hitachi Data Systems
              Hortonworks
              HP
              IBM
              Informatica
              Intel
              Jaspersoft
              Microsoft
              MongoDB (Formerly 10Gen)
              MU Sigma
              Netapp
              Opera Solutions
              Oracle
              Pentaho
              Platfora
              Qliktech
              Quantum
              Rackspace
              Revolution Analytics
              Salesforce
              SAP
              SAS Institute
              Sisense
              Software AG/Terracotta
              Soft10 Automation
              Splunk
              Sqrrl
              Supermicro
              Tableau Software
              Teradata
              Think Big Analytics
              Tidemark Systems
              Treeminer
              VMware (Part of EMC)
              Q/A session
            端海教育實驗設備
            android開發板
            linux_android開發板
            fpga圖像處理
            fpga培訓班*
             
            本部份程部分實驗室實景
            端海實驗室
            實驗室
            端海培訓優勢
             
              合作伙伴與授權機構



            Altera全球合作培訓機構



            諾基亞Symbian公司授權培訓中心


            Atmel公司全球戰略合作伙伴


            微軟全球嵌入式培訓合作伙伴


            英國ARM公司授權培訓中心


            ARM工具關鍵合作單位
              我們培訓過的企業客戶評價:
                端海的andriod系統與應用培訓完全符合了我公司的要求,達到了我公司培訓的目的。特別值得一提的是授部份講師針對我們公司的開發的項目專門提供了一些很好程序的源代碼,基本滿足了我們的項目要求。
            ——上海貝爾,李工
                端海培訓DSP2000的老師,上部份思路清晰,口齒清楚,由淺入深,重點突出,培訓效果是不錯的,
            達到了我們想要的效果,希望繼續合作下去。
            ——中國電子科技集團技術部主任馬工
                端海的FPGA培訓很好地填補了高校FPGA培訓空白,不錯。總之,有利于學生的發展,有利于教師的發展,有利于部份程的發展,有利于社會的發展。
            ——上海電子學院,馮老師
                端海給我們公司提供的Dsp6000培訓,符合我們項目的開發要求,解決了很多困惑我們很久的問題,與端海的合作非常愉快。
            ——公安部第三研究所,項目部負責人李先生
                MTK培訓-我在網上找了很久,就是找不到。在端海居然有MTK驅動的培訓,老師經驗很豐富,知識面很廣。下一個還想培訓IPHONE蘋果手機。跟他們合作很愉快,老師很有人情味,態度很和藹。
            ——臺灣雙揚科技,研發處經理,楊先生
                端海對我們公司的iPhone培訓,實驗項目很多,確實學到了東西。受益無窮?。√貏e是對于那種正在開發項目的,確實是物超所值。
            ——臺灣歐澤科技,張工
                通過參加Symbian培訓,再做Symbian相關的項目感覺更加得心應手了,理論加實踐的授部份方式,很有針對性,非常的適合我們。學完之后,很輕松的就完成了我們的項目。
            ——IBM公司,沈經理
                有端海這樣的DSP開發培訓單位,是教育行業的財富,聽了他們的部份,茅塞頓開。
            ——上海醫療器械高等學校,羅老師
              我們最新培訓過的企業客戶以及培訓的主要內容:
             

            一汽海馬汽車DSP培訓
            蘇州金屬研究院DSP培訓
            南京南瑞集團技術FPGA培訓
            西安愛生技術集團FPGA培訓,DSP培訓
            成都熊谷加世電氣DSP培訓
            福斯賽諾分析儀器(蘇州)FPGA培訓
            南京國電工程FPGA培訓
            北京環境特性研究所達芬奇培訓
            中國科學院微系統與信息技術研究所FPGA高級培訓
            重慶網視只能流技術開發達芬奇培訓
            無錫力芯微電子股份IC電磁兼容
            河北科學院研究所FPGA培訓
            上海微小衛星工程中心DSP培訓
            廣州航天航空POWERPC培訓
            桂林航天工學院DSP培訓
            江蘇五維電子科技達芬奇培訓
            無錫步進電機自動控制技術DSP培訓
            江門市安利電源工程DSP培訓
            長江力偉股份CADENCE培訓
            愛普生科技(無錫)數字模擬電路
            河南平高電氣DSP培訓
            中國航天員科研訓練中心A/D仿真
            常州易控汽車電子WINDOWS驅動培訓
            南通大學DSP培訓
            上海集成電路研發中心達芬奇培訓
            北京瑞志合眾科技WINDOWS驅動培訓
            江蘇金智科技股份FPGA高級培訓
            中國重工第710研究所FPGA高級培訓
            蕪湖伯特利汽車安全系統DSP培訓
            廈門中智能軟件技術Android培訓
            上??坡囕v部件系統EMC培訓
            中國電子科技集團第五十研究所,軟件無線電培訓
            蘇州浩克系統科技FPGA培訓
            上海申達自動防范系統FPGA培訓
            四川長虹佳華信息MTK培訓
            公安部第三研究所--FPGA初中高技術開發培訓以及DSP達芬奇芯片視頻、圖像處理技術培訓
            上海電子信息職業技術學院--FPGA高級開發技術培訓
            上海點逸網絡科技有限公司--3G手機ANDROID應用和系統開發技術培訓
            格科微電子有限公司--MTK應用(MMI)和驅動開發技術培訓
            南昌航空大學--fpga高級開發技術培訓
            IBM公司--3G手機ANDROID系統和應用技術開發培訓
            上海貝爾--3G手機ANDROID系統和應用技術開發培訓
            中國雙飛--Vxworks應用和BSP開發技術培訓

             

            上海水務建設工程有限公司--Alter/XilinxFPGA應用開發技術培訓
            恩法半導體科技--AllegroCandencePCB仿真和信號完整性技術培訓
            中國計量學院--3G手機ANDROID應用和系統開發技術培訓
            冠捷科技--FPGA芯片設計技術培訓
            芬尼克茲節能設備--FPGA高級技術開發培訓
            川奇光電--3G手機ANDROID系統和應用技術開發培訓
            東華大學--Dsp6000系統開發技術培訓
            上海理工大學--FPGA高級開發技術培訓
            同濟大學--Dsp6000圖像/視頻處理技術培訓
            上海醫療器械高等??茖W校--Dsp6000圖像/視頻處理技術培訓
            中航工業無線電電子研究所--Vxworks應用和BSP開發技術培訓
            北京交通大學--Powerpc開發技術培訓
            浙江理工大學--Dsp6000圖像/視頻處理技術培訓
            臺灣雙陽科技股份有限公司--MTK應用(MMI)和驅動開發技術培訓
            滾石移動--MTK應用(MMI)和驅動開發技術培訓
            冠捷半導體--Linux系統開發技術培訓
            奧波--CortexM3+uC/OS開發技術培訓
            迅時通信--WinCE應用與驅動開發技術培訓
            海鷹醫療電子系統--DSP6000圖像處理技術培訓
            博耀科技--Linux系統開發技術培訓
            華路時代信息技術--VxWorksBSP開發技術培訓
            臺灣歐澤科技--iPhone開發技術培訓
            寶康電子--AllegroCandencePCB仿真和信號完整性技術培訓
            上海天能電子有限公司--AllegroCandencePCB仿真和信號完整性技術培訓
            上海亨通光電科技有限公司--andriod應用和系統移植技術培訓
            上海智搜文化傳播有限公司--Symbian開發培訓
            先先信息科技有限公司--brew手機開發技術培訓
            鼎捷集團--MTK應用(MMI)和驅動開發技術培訓
            傲然科技--MTK應用(MMI)和驅動開發技術培訓
            中軟國際--Linux系統開發技術培訓
            龍旗控股集團--MTK應用(MMI)和驅動開發技術培訓
            研祥智能股份有限公司--MTK應用(MMI)和驅動開發技術培訓
            羅氏診斷--Linux應用開發技術培訓
            西東控制集團--DSP2000應用技術及DSP2000在光伏并網發電中的應用與開發
            科大訊飛--MTK應用(MMI)和驅動開發技術培訓
            東北農業大學--IPHONE蘋果應用開發技術培訓
            中國電子科技集團--Dsp2000系統和應用開發技術培訓
            中國船舶重工集團--Dsp2000系統開發技術培訓
            晶方半導體--FPGA初中高技術培訓
            肯特智能儀器有限公司--FPGA初中高技術培訓
            哈爾濱大學--IPHONE蘋果應用開發技術培訓
            昆明電器科學研究所--Dsp2000系統開發技術
            奇瑞汽車股份--單片機應用開發技術培訓


             

            -

             

              端海企業學院  
            友情鏈接:Cadence培訓 ICEPAK培訓 EMC培訓 電磁兼容培訓 sas容培訓 羅克韋爾PLC培訓 歐姆龍PLC培訓 PLC培訓 三菱PLC培訓 西門子PLC培訓 dcs培訓 橫河dcs培訓 艾默生培訓 robot CAD培訓 eplan培訓 dcs培訓 電路板設計培訓 浙大dcs培訓 PCB設計培訓 adams培訓 fluent培訓系列課程 培訓機構課程短期培訓系列課程培訓機構 長期課程列表實踐課程高級課程學校培訓機構周末班培訓 南京 NS3培訓 OpenGL培訓 FPGA培訓 PCIE培訓 MTK培訓 Cortex訓 Arduino培訓 單片機培訓 EMC培訓 信號完整性培訓 電源設計培訓 電機控制培訓 LabVIEW培訓 OPENCV培訓 集成電路培訓 UVM驗證培訓 VxWorks培訓 CST培訓 PLC培訓 Python培訓 ANSYS培訓 VB語言培訓 HFSS培訓 SAS培訓 Ansys培訓 短期培訓系列課程培訓機構 長期課程列表實踐課程高級課程學校培訓機構周末班 端海 教育 企業 學院 培訓課程 系列班 長期課程列表實踐課程高級課程學校培訓機構周末班 短期培訓系列課程培訓機構 端海教育企業學院培訓課程 系列班
            在線客服
            538在线视频二三区视视频