<thead id="fflbj"><font id="fflbj"><cite id="fflbj"></cite></font></thead>
    <progress id="fflbj"><thead id="fflbj"><font id="fflbj"></font></thead></progress>

            課程目錄:AutoML培訓
            4401 人關注
            (78637/99817)
            課程大綱:

                     AutoML培訓

             

             

             

            Introduction

            Setting up a Working Environment

            Overview of AutoML Features

            How AutoML Explores Algorithms

            Gradient Boosting Machines (GBMs), Random Forests, GLMs, etc.
            Solving Problems by Use-Case

            Solving Problems by Training Data Type

            Data Privacy Considerations

            Cost Considerations

            Preparing Data

            Working with Numeric and Categorical Data

            IID tabular data (H2O AutoML, auto-sklearn, TPOT)
            Working with Time Dependent Data (Time-Series Data)

            Classifying Raw Text

            Classifying Raw Image Data

            Deep Learning and Neural Architecture Search (TensorFlow, PyTorch, Auto-Keras, etc.)
            Deploying an AutoML Method

            A Look at the Algorithms Inside AutoML

            Ensembling Different Models Together

            Troubleshooting

            Summary and Conclusion

            538在线视频二三区视视频