<thead id="fflbj"><font id="fflbj"><cite id="fflbj"></cite></font></thead>
    <progress id="fflbj"><thead id="fflbj"><font id="fflbj"></font></thead></progress>

            課程目錄:機器學習基礎 – 算法基礎培訓
            4401 人關注
            (78637/99817)
            課程大綱:

                      機器學習基礎 – 算法基礎培訓

             

             

             

            第九講: Linear Regression
            weight vector for linear hypotheses and squared error instantly calculated by analytic solution

            第十講: Logistic Regression
            gradient descent on cross-entropy error to get good logistic hypothesis

            第十一講: Linear Models for Classification
            binary classification via (logistic) regression; multiclass classification via OVA/OVO decomposition

            第十二講: Nonlinear Transformation
            nonlinear model via nonlinear feature transform+linear model with price of model complexity

            第十三講: Hazard of Overfitting
            overfitting happens with excessive power, stochastic/deterministic noise and limited data

            第十四講: Regularization
            minimize augmented error, where the added regularizer effectively limits model complexity

            第十五講: Validation
            (crossly) reserve validation data to simulate testing procedure for model selection

            第十六講: Three Learning Principles
            be aware of model complexity, data goodness and your professionalism

            538在线视频二三区视视频